| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climliminf.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
climliminf.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
climliminf.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 4 |
1 2 3
|
climlimsup |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ) |
| 5 |
4
|
biimpd |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) ) |
| 6 |
5
|
imp |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 10 |
7 2 8 9
|
climliminflimsupd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
| 11 |
6 10
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) |
| 12 |
|
climrel |
⊢ Rel ⇝ |
| 13 |
12
|
releldmi |
⊢ ( 𝐹 ⇝ ( lim inf ‘ 𝐹 ) → 𝐹 ∈ dom ⇝ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) → 𝐹 ∈ dom ⇝ ) |
| 15 |
11 14
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) ) |