Metamath Proof Explorer


Theorem liminflt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflt.k 𝑘 𝐹
liminflt.m ( 𝜑𝑀 ∈ ℤ )
liminflt.z 𝑍 = ( ℤ𝑀 )
liminflt.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
liminflt.r ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ )
liminflt.x ( 𝜑𝑋 ∈ ℝ+ )
Assertion liminflt ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 liminflt.k 𝑘 𝐹
2 liminflt.m ( 𝜑𝑀 ∈ ℤ )
3 liminflt.z 𝑍 = ( ℤ𝑀 )
4 liminflt.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
5 liminflt.r ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ )
6 liminflt.x ( 𝜑𝑋 ∈ ℝ+ )
7 2 3 4 5 6 liminfltlem ( 𝜑 → ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) )
8 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
9 8 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ∀ 𝑙 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ) )
10 nfcv 𝑘 lim inf
11 10 1 nffv 𝑘 ( lim inf ‘ 𝐹 )
12 nfcv 𝑘 <
13 nfcv 𝑘 𝑙
14 1 13 nffv 𝑘 ( 𝐹𝑙 )
15 nfcv 𝑘 +
16 nfcv 𝑘 𝑋
17 14 15 16 nfov 𝑘 ( ( 𝐹𝑙 ) + 𝑋 )
18 11 12 17 nfbr 𝑘 ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 )
19 nfv 𝑙 ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 )
20 fveq2 ( 𝑙 = 𝑘 → ( 𝐹𝑙 ) = ( 𝐹𝑘 ) )
21 20 oveq1d ( 𝑙 = 𝑘 → ( ( 𝐹𝑙 ) + 𝑋 ) = ( ( 𝐹𝑘 ) + 𝑋 ) )
22 21 breq2d ( 𝑙 = 𝑘 → ( ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) ) )
23 18 19 22 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) )
24 23 a1i ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) ) )
25 9 24 bitrd ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) ) )
26 25 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑙 ) + 𝑋 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) )
27 7 26 sylib ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹𝑘 ) + 𝑋 ) )