Step |
Hyp |
Ref |
Expression |
1 |
|
liminflt.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
liminflt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
liminflt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
liminflt.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
5 |
|
liminflt.r |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
6 |
|
liminflt.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
7 |
2 3 4 5 6
|
liminfltlem |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
8
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 lim inf |
11 |
10 1
|
nffv |
⊢ Ⅎ 𝑘 ( lim inf ‘ 𝐹 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
14 |
1 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
16 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
17 |
14 15 16
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) |
18 |
11 12 17
|
nfbr |
⊢ Ⅎ 𝑘 ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑙 ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) |
20 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) = ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
23 |
18 19 22
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |
24 |
23
|
a1i |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
25 |
9 24
|
bitrd |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑙 ) + 𝑋 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |
27 |
7 26
|
sylib |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |