Step |
Hyp |
Ref |
Expression |
1 |
|
liminfltlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminfltlem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminfltlem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
liminfltlem.r |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
5 |
|
liminfltlem.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
6 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) |
7 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
8 |
7
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
9 |
8
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℝ ) |
10 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ∈ V |
12 |
11
|
limsupcli |
⊢ ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
14 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
16 |
14 15 1 2 3
|
liminfvaluz4 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |
17 |
16 4
|
eqeltrrd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
18 |
13 17
|
xnegrecl2d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ ) |
19 |
6 1 2 9 18 5
|
limsupgt |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |
20 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
21 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
22 |
21
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
23 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑘 ) ∈ V |
24 |
|
fvmpt4 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ - ( 𝐹 ‘ 𝑘 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
25 |
23 24
|
mpan2 |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) = ( - ( 𝐹 ‘ 𝑘 ) − 𝑋 ) ) |
28 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
29 |
5
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑋 ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑋 ∈ ℂ ) |
32 |
28 31
|
negdi2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) = ( - ( 𝐹 ‘ 𝑘 ) − 𝑋 ) ) |
33 |
27 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) = - ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |
34 |
18
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℂ ) |
35 |
18
|
rexnegd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) = - ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |
36 |
16 35
|
eqtr2d |
⊢ ( 𝜑 → - ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) = ( lim inf ‘ 𝐹 ) ) |
37 |
34 36
|
negcon1ad |
⊢ ( 𝜑 → - ( lim inf ‘ 𝐹 ) = ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |
38 |
37
|
eqcomd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) = - ( lim inf ‘ 𝐹 ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) = - ( lim inf ‘ 𝐹 ) ) |
40 |
33 39
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ↔ - ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) < - ( lim inf ‘ 𝐹 ) ) ) |
41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
42 |
7 30
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ∈ ℝ ) |
43 |
41 42
|
ltnegd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ↔ - ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) < - ( lim inf ‘ 𝐹 ) ) ) |
44 |
40 43
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
45 |
20 22 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
46 |
45
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
47 |
46
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) ) |
48 |
19 47
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑋 ) ) |