Step |
Hyp |
Ref |
Expression |
1 |
|
liminfltlem.m |
|- ( ph -> M e. ZZ ) |
2 |
|
liminfltlem.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
liminfltlem.f |
|- ( ph -> F : Z --> RR ) |
4 |
|
liminfltlem.r |
|- ( ph -> ( liminf ` F ) e. RR ) |
5 |
|
liminfltlem.x |
|- ( ph -> X e. RR+ ) |
6 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> -u ( F ` k ) ) |
7 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
8 |
7
|
renegcld |
|- ( ( ph /\ k e. Z ) -> -u ( F ` k ) e. RR ) |
9 |
8
|
fmpttd |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) : Z --> RR ) |
10 |
2
|
fvexi |
|- Z e. _V |
11 |
10
|
mptex |
|- ( k e. Z |-> -u ( F ` k ) ) e. _V |
12 |
11
|
limsupcli |
|- ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) e. RR* |
13 |
12
|
a1i |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) e. RR* ) |
14 |
|
nfv |
|- F/ k ph |
15 |
|
nfcv |
|- F/_ k F |
16 |
14 15 1 2 3
|
liminfvaluz4 |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
17 |
16 4
|
eqeltrrd |
|- ( ph -> -e ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) e. RR ) |
18 |
13 17
|
xnegrecl2d |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) e. RR ) |
19 |
6 1 2 9 18 5
|
limsupgt |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
20 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
21 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
22 |
21
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
23 |
|
negex |
|- -u ( F ` k ) e. _V |
24 |
|
fvmpt4 |
|- ( ( k e. Z /\ -u ( F ` k ) e. _V ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
25 |
23 24
|
mpan2 |
|- ( k e. Z -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
27 |
26
|
oveq1d |
|- ( ( ph /\ k e. Z ) -> ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) = ( -u ( F ` k ) - X ) ) |
28 |
7
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
29 |
5
|
rpred |
|- ( ph -> X e. RR ) |
30 |
29
|
adantr |
|- ( ( ph /\ k e. Z ) -> X e. RR ) |
31 |
30
|
recnd |
|- ( ( ph /\ k e. Z ) -> X e. CC ) |
32 |
28 31
|
negdi2d |
|- ( ( ph /\ k e. Z ) -> -u ( ( F ` k ) + X ) = ( -u ( F ` k ) - X ) ) |
33 |
27 32
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) = -u ( ( F ` k ) + X ) ) |
34 |
18
|
recnd |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) e. CC ) |
35 |
18
|
rexnegd |
|- ( ph -> -e ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -u ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
36 |
16 35
|
eqtr2d |
|- ( ph -> -u ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = ( liminf ` F ) ) |
37 |
34 36
|
negcon1ad |
|- ( ph -> -u ( liminf ` F ) = ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
38 |
37
|
eqcomd |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -u ( liminf ` F ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -u ( liminf ` F ) ) |
40 |
33 39
|
breq12d |
|- ( ( ph /\ k e. Z ) -> ( ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) <-> -u ( ( F ` k ) + X ) < -u ( liminf ` F ) ) ) |
41 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( liminf ` F ) e. RR ) |
42 |
7 30
|
readdcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) + X ) e. RR ) |
43 |
41 42
|
ltnegd |
|- ( ( ph /\ k e. Z ) -> ( ( liminf ` F ) < ( ( F ` k ) + X ) <-> -u ( ( F ` k ) + X ) < -u ( liminf ` F ) ) ) |
44 |
40 43
|
bitr4d |
|- ( ( ph /\ k e. Z ) -> ( ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) <-> ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
45 |
20 22 44
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) <-> ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
46 |
45
|
ralbidva |
|- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
47 |
46
|
rexbidva |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( k e. Z |-> -u ( F ` k ) ) ` k ) - X ) < ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
48 |
19 47
|
mpbid |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |