Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvaluz4.1 |
|- F/ k ph |
2 |
|
liminfvaluz4.2 |
|- F/_ k F |
3 |
|
liminfvaluz4.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
liminfvaluz4.4 |
|- Z = ( ZZ>= ` M ) |
5 |
|
liminfvaluz4.5 |
|- ( ph -> F : Z --> RR ) |
6 |
|
nfcv |
|- F/_ k Z |
7 |
6 2 5
|
feqmptdf |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
8 |
7
|
fveq2d |
|- ( ph -> ( liminf ` F ) = ( liminf ` ( k e. Z |-> ( F ` k ) ) ) ) |
9 |
5
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
10 |
1 3 4 9
|
liminfvaluz2 |
|- ( ph -> ( liminf ` ( k e. Z |-> ( F ` k ) ) ) = -e ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |