| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfvaluz4.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
liminfvaluz4.2 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
liminfvaluz4.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
liminfvaluz4.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
liminfvaluz4.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑍 |
| 7 |
6 2 5
|
feqmptdf |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 9 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 10 |
1 3 4 9
|
liminfvaluz2 |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ) ) |