Step |
Hyp |
Ref |
Expression |
1 |
|
liminflt.k |
|- F/_ k F |
2 |
|
liminflt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
liminflt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
liminflt.f |
|- ( ph -> F : Z --> RR ) |
5 |
|
liminflt.r |
|- ( ph -> ( liminf ` F ) e. RR ) |
6 |
|
liminflt.x |
|- ( ph -> X e. RR+ ) |
7 |
2 3 4 5 6
|
liminfltlem |
|- ( ph -> E. i e. Z A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) ) |
8 |
|
fveq2 |
|- ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) |
9 |
8
|
raleqdv |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) ) ) |
10 |
|
nfcv |
|- F/_ k liminf |
11 |
10 1
|
nffv |
|- F/_ k ( liminf ` F ) |
12 |
|
nfcv |
|- F/_ k < |
13 |
|
nfcv |
|- F/_ k l |
14 |
1 13
|
nffv |
|- F/_ k ( F ` l ) |
15 |
|
nfcv |
|- F/_ k + |
16 |
|
nfcv |
|- F/_ k X |
17 |
14 15 16
|
nfov |
|- F/_ k ( ( F ` l ) + X ) |
18 |
11 12 17
|
nfbr |
|- F/ k ( liminf ` F ) < ( ( F ` l ) + X ) |
19 |
|
nfv |
|- F/ l ( liminf ` F ) < ( ( F ` k ) + X ) |
20 |
|
fveq2 |
|- ( l = k -> ( F ` l ) = ( F ` k ) ) |
21 |
20
|
oveq1d |
|- ( l = k -> ( ( F ` l ) + X ) = ( ( F ` k ) + X ) ) |
22 |
21
|
breq2d |
|- ( l = k -> ( ( liminf ` F ) < ( ( F ` l ) + X ) <-> ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
23 |
18 19 22
|
cbvralw |
|- ( A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |
24 |
23
|
a1i |
|- ( i = j -> ( A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
25 |
9 24
|
bitrd |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
26 |
25
|
cbvrexvw |
|- ( E. i e. Z A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |
27 |
7 26
|
sylib |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |