Metamath Proof Explorer


Theorem liminflt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflt.k _kF
liminflt.m φM
liminflt.z Z=M
liminflt.f φF:Z
liminflt.r φlim infF
liminflt.x φX+
Assertion liminflt φjZkjlim infF<Fk+X

Proof

Step Hyp Ref Expression
1 liminflt.k _kF
2 liminflt.m φM
3 liminflt.z Z=M
4 liminflt.f φF:Z
5 liminflt.r φlim infF
6 liminflt.x φX+
7 2 3 4 5 6 liminfltlem φiZlilim infF<Fl+X
8 fveq2 i=ji=j
9 8 raleqdv i=jlilim infF<Fl+Xljlim infF<Fl+X
10 nfcv _klim inf
11 10 1 nffv _klim infF
12 nfcv _k<
13 nfcv _kl
14 1 13 nffv _kFl
15 nfcv _k+
16 nfcv _kX
17 14 15 16 nfov _kFl+X
18 11 12 17 nfbr klim infF<Fl+X
19 nfv llim infF<Fk+X
20 fveq2 l=kFl=Fk
21 20 oveq1d l=kFl+X=Fk+X
22 21 breq2d l=klim infF<Fl+Xlim infF<Fk+X
23 18 19 22 cbvralw ljlim infF<Fl+Xkjlim infF<Fk+X
24 23 a1i i=jljlim infF<Fl+Xkjlim infF<Fk+X
25 9 24 bitrd i=jlilim infF<Fl+Xkjlim infF<Fk+X
26 25 cbvrexvw iZlilim infF<Fl+XjZkjlim infF<Fk+X
27 7 26 sylib φjZkjlim infF<Fk+X