Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminflt.k | |
|
liminflt.m | |
||
liminflt.z | |
||
liminflt.f | |
||
liminflt.r | |
||
liminflt.x | |
||
Assertion | liminflt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflt.k | |
|
2 | liminflt.m | |
|
3 | liminflt.z | |
|
4 | liminflt.f | |
|
5 | liminflt.r | |
|
6 | liminflt.x | |
|
7 | 2 3 4 5 6 | liminfltlem | |
8 | fveq2 | |
|
9 | 8 | raleqdv | |
10 | nfcv | |
|
11 | 10 1 | nffv | |
12 | nfcv | |
|
13 | nfcv | |
|
14 | 1 13 | nffv | |
15 | nfcv | |
|
16 | nfcv | |
|
17 | 14 15 16 | nfov | |
18 | 11 12 17 | nfbr | |
19 | nfv | |
|
20 | fveq2 | |
|
21 | 20 | oveq1d | |
22 | 21 | breq2d | |
23 | 18 19 22 | cbvralw | |
24 | 23 | a1i | |
25 | 9 24 | bitrd | |
26 | 25 | cbvrexvw | |
27 | 7 26 | sylib | |