Metamath Proof Explorer


Theorem climresdm

Description: A real function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses climresdm.1 ( 𝜑𝑀 ∈ ℤ )
climresdm.2 ( 𝜑𝐹𝑉 )
Assertion climresdm ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) )

Proof

Step Hyp Ref Expression
1 climresdm.1 ( 𝜑𝑀 ∈ ℤ )
2 climresdm.2 ( 𝜑𝐹𝑉 )
3 resexg ( 𝐹 ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ V )
4 3 adantl ( ( 𝜑𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ V )
5 fvexd ( ( 𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) ∈ V )
6 climdm ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
7 6 biimpi ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
8 7 adantl ( ( 𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
9 1 adantr ( ( 𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ )
10 simpr ( ( 𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
11 9 10 climresd ( ( 𝜑𝐹 ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) )
12 8 11 mpbird ( ( 𝜑𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) )
13 4 5 12 breldmd ( ( 𝜑𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ )
14 2 adantr ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → 𝐹𝑉 )
15 fvexd ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) ∈ V )
16 climdm ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) )
17 16 biimpi ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) )
18 17 adantl ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) )
19 1 adantr ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → 𝑀 ∈ ℤ )
20 19 14 climresd ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) ↔ 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) ) )
21 18 20 mpbid ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ𝑀 ) ) ) )
22 14 15 21 breldmd ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
23 13 22 impbida ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ∈ dom ⇝ ) )