| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climresdm.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
climresdm.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 3 |
|
resexg |
⊢ ( 𝐹 ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) |
| 5 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) ∈ V ) |
| 6 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 7 |
6
|
biimpi |
⊢ ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 11 |
9 10
|
climresd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) ) |
| 12 |
8 11
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 13 |
4 5 12
|
breldmd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ∈ 𝑉 ) |
| 15 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ∈ V ) |
| 16 |
|
climdm |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 17 |
16
|
biimpi |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
| 20 |
19 14
|
climresd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ↔ 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) ) |
| 21 |
18 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 22 |
14 15 21
|
breldmd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 23 |
13 22
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) ) |