Step |
Hyp |
Ref |
Expression |
1 |
|
climresdm.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climresdm.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
resexg |
⊢ ( 𝐹 ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ V ) |
5 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘ 𝐹 ) ∈ V ) |
6 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
7 |
6
|
biimpi |
⊢ ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
11 |
9 10
|
climresd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) ) |
12 |
8 11
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ 𝐹 ) ) |
13 |
4 5 12
|
breldmd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ∈ 𝑉 ) |
15 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ∈ V ) |
16 |
|
climdm |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
17 |
16
|
biimpi |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
20 |
19 14
|
climresd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ↔ 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) ) |
21 |
18 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
22 |
14 15 21
|
breldmd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
23 |
13 22
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ dom ⇝ ) ) |