| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climresdm.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | climresdm.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 3 |  | resexg | ⊢ ( 𝐹  ∈  dom   ⇝   →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  V ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  V ) | 
						
							| 5 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  (  ⇝  ‘ 𝐹 )  ∈  V ) | 
						
							| 6 |  | climdm | ⊢ ( 𝐹  ∈  dom   ⇝   ↔  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝐹  ∈  dom   ⇝   →  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  𝑀  ∈  ℤ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 11 | 9 10 | climresd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ 𝐹 )  ↔  𝐹  ⇝  (  ⇝  ‘ 𝐹 ) ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ 𝐹 ) ) | 
						
							| 13 | 4 5 12 | breldmd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  dom   ⇝  )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  𝐹  ∈  𝑉 ) | 
						
							| 15 |  | fvexd | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) )  ∈  V ) | 
						
							| 16 |  | climdm | ⊢ ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝   ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) ) ) | 
						
							| 17 | 16 | biimpi | ⊢ ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝   →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) ) ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  𝑀  ∈  ℤ ) | 
						
							| 20 | 19 14 | climresd | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) )  ↔  𝐹  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) ) ) ) | 
						
							| 21 | 18 20 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  𝐹  ⇝  (  ⇝  ‘ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) ) ) ) | 
						
							| 22 | 14 15 21 | breldmd | ⊢ ( ( 𝜑  ∧  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 23 | 13 22 | impbida | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝   ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ∈  dom   ⇝  ) ) |