Metamath Proof Explorer


Theorem breldmd

Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses breldmd.1 ( 𝜑𝐴𝐶 )
breldmd.2 ( 𝜑𝐵𝐷 )
breldmd.3 ( 𝜑𝐴 𝑅 𝐵 )
Assertion breldmd ( 𝜑𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 breldmd.1 ( 𝜑𝐴𝐶 )
2 breldmd.2 ( 𝜑𝐵𝐷 )
3 breldmd.3 ( 𝜑𝐴 𝑅 𝐵 )
4 breldmg ( ( 𝐴𝐶𝐵𝐷𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 )
5 1 2 3 4 syl3anc ( 𝜑𝐴 ∈ dom 𝑅 )