Metamath Proof Explorer
Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023)
|
|
Ref |
Expression |
|
Hypotheses |
breldmd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
|
|
breldmd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
|
|
breldmd.3 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
|
Assertion |
breldmd |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
breldmd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
breldmd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
3 |
|
breldmd.3 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
4 |
|
breldmg |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |