Metamath Proof Explorer


Theorem breldmd

Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses breldmd.1 φ A C
breldmd.2 φ B D
breldmd.3 φ A R B
Assertion breldmd φ A dom R

Proof

Step Hyp Ref Expression
1 breldmd.1 φ A C
2 breldmd.2 φ B D
3 breldmd.3 φ A R B
4 breldmg A C B D A R B A dom R
5 1 2 3 4 syl3anc φ A dom R