Step |
Hyp |
Ref |
Expression |
1 |
|
climxlim2.m |
|- ( ph -> M e. ZZ ) |
2 |
|
climxlim2.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
climxlim2.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
climxlim2.a |
|- ( ph -> F ~~> A ) |
5 |
2
|
eluzelz2 |
|- ( j e. Z -> j e. ZZ ) |
6 |
5
|
ad2antlr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> j e. ZZ ) |
7 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
8 |
3
|
adantr |
|- ( ( ph /\ j e. Z ) -> F : Z --> RR* ) |
9 |
2
|
uzssd3 |
|- ( j e. Z -> ( ZZ>= ` j ) C_ Z ) |
10 |
9
|
adantl |
|- ( ( ph /\ j e. Z ) -> ( ZZ>= ` j ) C_ Z ) |
11 |
8 10
|
fssresd |
|- ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) |
12 |
11
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) |
13 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) |
14 |
4
|
adantr |
|- ( ( ph /\ j e. Z ) -> F ~~> A ) |
15 |
2
|
fvexi |
|- Z e. _V |
16 |
15
|
a1i |
|- ( ph -> Z e. _V ) |
17 |
3 16
|
fexd |
|- ( ph -> F e. _V ) |
18 |
|
climres |
|- ( ( j e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) |
19 |
5 17 18
|
syl2anr |
|- ( ( ph /\ j e. Z ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) |
20 |
14 19
|
mpbird |
|- ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~> A ) |
21 |
20
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~> A ) |
22 |
6 7 12 13 21
|
climxlim2lem |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~>* A ) |
23 |
2 3
|
fuzxrpmcn |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ j e. Z ) -> F e. ( RR* ^pm CC ) ) |
25 |
5
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ZZ ) |
26 |
24 25
|
xlimres |
|- ( ( ph /\ j e. Z ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) |
27 |
26
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) |
28 |
22 27
|
mpbird |
|- ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> F ~~>* A ) |
29 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
30 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
31 |
4 30
|
syl |
|- ( ph -> A e. CC ) |
32 |
|
breldmg |
|- ( ( F e. _V /\ A e. CC /\ F ~~> A ) -> F e. dom ~~> ) |
33 |
17 31 4 32
|
syl3anc |
|- ( ph -> F e. dom ~~> ) |
34 |
1 2 29 33
|
climrescn |
|- ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) |
35 |
28 34
|
r19.29a |
|- ( ph -> F ~~>* A ) |