Metamath Proof Explorer


Theorem climxlim2

Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +oo and -oo could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2.m
|- ( ph -> M e. ZZ )
climxlim2.z
|- Z = ( ZZ>= ` M )
climxlim2.f
|- ( ph -> F : Z --> RR* )
climxlim2.a
|- ( ph -> F ~~> A )
Assertion climxlim2
|- ( ph -> F ~~>* A )

Proof

Step Hyp Ref Expression
1 climxlim2.m
 |-  ( ph -> M e. ZZ )
2 climxlim2.z
 |-  Z = ( ZZ>= ` M )
3 climxlim2.f
 |-  ( ph -> F : Z --> RR* )
4 climxlim2.a
 |-  ( ph -> F ~~> A )
5 2 eluzelz2
 |-  ( j e. Z -> j e. ZZ )
6 5 ad2antlr
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> j e. ZZ )
7 eqid
 |-  ( ZZ>= ` j ) = ( ZZ>= ` j )
8 3 adantr
 |-  ( ( ph /\ j e. Z ) -> F : Z --> RR* )
9 2 uzssd3
 |-  ( j e. Z -> ( ZZ>= ` j ) C_ Z )
10 9 adantl
 |-  ( ( ph /\ j e. Z ) -> ( ZZ>= ` j ) C_ Z )
11 8 10 fssresd
 |-  ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* )
12 11 adantr
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* )
13 simpr
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC )
14 4 adantr
 |-  ( ( ph /\ j e. Z ) -> F ~~> A )
15 2 fvexi
 |-  Z e. _V
16 15 a1i
 |-  ( ph -> Z e. _V )
17 3 16 fexd
 |-  ( ph -> F e. _V )
18 climres
 |-  ( ( j e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) )
19 5 17 18 syl2anr
 |-  ( ( ph /\ j e. Z ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) )
20 14 19 mpbird
 |-  ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~> A )
21 20 adantr
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~> A )
22 6 7 12 13 21 climxlim2lem
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~>* A )
23 2 3 fuzxrpmcn
 |-  ( ph -> F e. ( RR* ^pm CC ) )
24 23 adantr
 |-  ( ( ph /\ j e. Z ) -> F e. ( RR* ^pm CC ) )
25 5 adantl
 |-  ( ( ph /\ j e. Z ) -> j e. ZZ )
26 24 25 xlimres
 |-  ( ( ph /\ j e. Z ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) )
27 26 adantr
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) )
28 22 27 mpbird
 |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> F ~~>* A )
29 3 ffnd
 |-  ( ph -> F Fn Z )
30 climcl
 |-  ( F ~~> A -> A e. CC )
31 4 30 syl
 |-  ( ph -> A e. CC )
32 breldmg
 |-  ( ( F e. _V /\ A e. CC /\ F ~~> A ) -> F e. dom ~~> )
33 17 31 4 32 syl3anc
 |-  ( ph -> F e. dom ~~> )
34 1 2 29 33 climrescn
 |-  ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC )
35 28 34 r19.29a
 |-  ( ph -> F ~~>* A )