| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climxlim2.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | climxlim2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | climxlim2.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 |  | climxlim2.a |  |-  ( ph -> F ~~> A ) | 
						
							| 5 | 2 | eluzelz2 |  |-  ( j e. Z -> j e. ZZ ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> j e. ZZ ) | 
						
							| 7 |  | eqid |  |-  ( ZZ>= ` j ) = ( ZZ>= ` j ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ j e. Z ) -> F : Z --> RR* ) | 
						
							| 9 | 2 | uzssd3 |  |-  ( j e. Z -> ( ZZ>= ` j ) C_ Z ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ j e. Z ) -> ( ZZ>= ` j ) C_ Z ) | 
						
							| 11 | 8 10 | fssresd |  |-  ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> RR* ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ j e. Z ) -> F ~~> A ) | 
						
							| 15 | 2 | fvexi |  |-  Z e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 17 | 3 16 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 18 |  | climres |  |-  ( ( j e. ZZ /\ F e. _V ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) | 
						
							| 19 | 5 17 18 | syl2anr |  |-  ( ( ph /\ j e. Z ) -> ( ( F |` ( ZZ>= ` j ) ) ~~> A <-> F ~~> A ) ) | 
						
							| 20 | 14 19 | mpbird |  |-  ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) ~~> A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~> A ) | 
						
							| 22 | 6 7 12 13 21 | climxlim2lem |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F |` ( ZZ>= ` j ) ) ~~>* A ) | 
						
							| 23 | 2 3 | fuzxrpmcn |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ j e. Z ) -> F e. ( RR* ^pm CC ) ) | 
						
							| 25 | 5 | adantl |  |-  ( ( ph /\ j e. Z ) -> j e. ZZ ) | 
						
							| 26 | 24 25 | xlimres |  |-  ( ( ph /\ j e. Z ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> ( F ~~>* A <-> ( F |` ( ZZ>= ` j ) ) ~~>* A ) ) | 
						
							| 28 | 22 27 | mpbird |  |-  ( ( ( ph /\ j e. Z ) /\ ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) -> F ~~>* A ) | 
						
							| 29 | 3 | ffnd |  |-  ( ph -> F Fn Z ) | 
						
							| 30 |  | climcl |  |-  ( F ~~> A -> A e. CC ) | 
						
							| 31 | 4 30 | syl |  |-  ( ph -> A e. CC ) | 
						
							| 32 |  | breldmg |  |-  ( ( F e. _V /\ A e. CC /\ F ~~> A ) -> F e. dom ~~> ) | 
						
							| 33 | 17 31 4 32 | syl3anc |  |-  ( ph -> F e. dom ~~> ) | 
						
							| 34 | 1 2 29 33 | climrescn |  |-  ( ph -> E. j e. Z ( F |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> CC ) | 
						
							| 35 | 28 34 | r19.29a |  |-  ( ph -> F ~~>* A ) |