Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimpnfmpt.k | |
|
xlimpnfmpt.m | |
||
xlimpnfmpt.z | |
||
xlimpnfmpt.b | |
||
xlimpnfmpt.f | |
||
Assertion | xlimpnfmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfmpt.k | |
|
2 | xlimpnfmpt.m | |
|
3 | xlimpnfmpt.z | |
|
4 | xlimpnfmpt.b | |
|
5 | xlimpnfmpt.f | |
|
6 | nfmpt1 | |
|
7 | 5 6 | nfcxfr | |
8 | 1 4 5 | fmptdf | |
9 | 7 2 3 8 | xlimpnf | |
10 | nfv | |
|
11 | 1 10 | nfan | |
12 | 3 | uztrn2 | |
13 | 12 | adantll | |
14 | simpll | |
|
15 | 14 13 4 | syl2anc | |
16 | 5 | fvmpt2 | |
17 | 13 15 16 | syl2anc | |
18 | 17 | breq2d | |
19 | 11 18 | ralbida | |
20 | 19 | rexbidva | |
21 | 20 | ralbidv | |
22 | breq1 | |
|
23 | 22 | rexralbidv | |
24 | fveq2 | |
|
25 | 24 | raleqdv | |
26 | 25 | cbvrexvw | |
27 | 23 26 | bitrdi | |
28 | 27 | cbvralvw | |
29 | 28 | a1i | |
30 | 9 21 29 | 3bitrd | |