Metamath Proof Explorer


Theorem xlimpnfmpt

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfmpt.k k φ
xlimpnfmpt.m φ M
xlimpnfmpt.z Z = M
xlimpnfmpt.b φ k Z B *
xlimpnfmpt.f F = k Z B
Assertion xlimpnfmpt φ F * +∞ x j Z k j x B

Proof

Step Hyp Ref Expression
1 xlimpnfmpt.k k φ
2 xlimpnfmpt.m φ M
3 xlimpnfmpt.z Z = M
4 xlimpnfmpt.b φ k Z B *
5 xlimpnfmpt.f F = k Z B
6 nfmpt1 _ k k Z B
7 5 6 nfcxfr _ k F
8 1 4 5 fmptdf φ F : Z *
9 7 2 3 8 xlimpnf φ F * +∞ y i Z k i y F k
10 nfv k i Z
11 1 10 nfan k φ i Z
12 3 uztrn2 i Z k i k Z
13 12 adantll φ i Z k i k Z
14 simpll φ i Z k i φ
15 14 13 4 syl2anc φ i Z k i B *
16 5 fvmpt2 k Z B * F k = B
17 13 15 16 syl2anc φ i Z k i F k = B
18 17 breq2d φ i Z k i y F k y B
19 11 18 ralbida φ i Z k i y F k k i y B
20 19 rexbidva φ i Z k i y F k i Z k i y B
21 20 ralbidv φ y i Z k i y F k y i Z k i y B
22 breq1 y = x y B x B
23 22 rexralbidv y = x i Z k i y B i Z k i x B
24 fveq2 i = j i = j
25 24 raleqdv i = j k i x B k j x B
26 25 cbvrexvw i Z k i x B j Z k j x B
27 23 26 bitrdi y = x i Z k i y B j Z k j x B
28 27 cbvralvw y i Z k i y B x j Z k j x B
29 28 a1i φ y i Z k i y B x j Z k j x B
30 9 21 29 3bitrd φ F * +∞ x j Z k j x B