Metamath Proof Explorer


Theorem xlimpnfmpt

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfmpt.k kφ
xlimpnfmpt.m φM
xlimpnfmpt.z Z=M
xlimpnfmpt.b φkZB*
xlimpnfmpt.f F=kZB
Assertion xlimpnfmpt φF*+∞xjZkjxB

Proof

Step Hyp Ref Expression
1 xlimpnfmpt.k kφ
2 xlimpnfmpt.m φM
3 xlimpnfmpt.z Z=M
4 xlimpnfmpt.b φkZB*
5 xlimpnfmpt.f F=kZB
6 nfmpt1 _kkZB
7 5 6 nfcxfr _kF
8 1 4 5 fmptdf φF:Z*
9 7 2 3 8 xlimpnf φF*+∞yiZkiyFk
10 nfv kiZ
11 1 10 nfan kφiZ
12 3 uztrn2 iZkikZ
13 12 adantll φiZkikZ
14 simpll φiZkiφ
15 14 13 4 syl2anc φiZkiB*
16 5 fvmpt2 kZB*Fk=B
17 13 15 16 syl2anc φiZkiFk=B
18 17 breq2d φiZkiyFkyB
19 11 18 ralbida φiZkiyFkkiyB
20 19 rexbidva φiZkiyFkiZkiyB
21 20 ralbidv φyiZkiyFkyiZkiyB
22 breq1 y=xyBxB
23 22 rexralbidv y=xiZkiyBiZkixB
24 fveq2 i=ji=j
25 24 raleqdv i=jkixBkjxB
26 25 cbvrexvw iZkixBjZkjxB
27 23 26 bitrdi y=xiZkiyBjZkjxB
28 27 cbvralvw yiZkiyBxjZkjxB
29 28 a1i φyiZkiyBxjZkjxB
30 9 21 29 3bitrd φF*+∞xjZkjxB