Step |
Hyp |
Ref |
Expression |
1 |
|
xlimconst2.p |
|- F/ k ph |
2 |
|
xlimconst2.k |
|- F/_ k F |
3 |
|
xlimconst2.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
xlimconst2.f |
|- ( ph -> F : Z --> RR* ) |
5 |
|
xlimconst2.n |
|- ( ph -> N e. Z ) |
6 |
|
xlimconst2.a |
|- ( ph -> A e. RR* ) |
7 |
|
xlimconst2.e |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = A ) |
8 |
|
nfcv |
|- F/_ k ( ZZ>= ` N ) |
9 |
2 8
|
nfres |
|- F/_ k ( F |` ( ZZ>= ` N ) ) |
10 |
3 5
|
eluzelz2d |
|- ( ph -> N e. ZZ ) |
11 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
12 |
4
|
ffnd |
|- ( ph -> F Fn Z ) |
13 |
3 5
|
uzssd2 |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
14 |
12 13
|
fnssresd |
|- ( ph -> ( F |` ( ZZ>= ` N ) ) Fn ( ZZ>= ` N ) ) |
15 |
|
fvres |
|- ( k e. ( ZZ>= ` N ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) ) |
16 |
15
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) ) |
17 |
16 7
|
eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = A ) |
18 |
1 9 10 11 14 6 17
|
xlimconst |
|- ( ph -> ( F |` ( ZZ>= ` N ) ) ~~>* A ) |
19 |
3 4
|
fuzxrpmcn |
|- ( ph -> F e. ( RR* ^pm CC ) ) |
20 |
19 10
|
xlimres |
|- ( ph -> ( F ~~>* A <-> ( F |` ( ZZ>= ` N ) ) ~~>* A ) ) |
21 |
18 20
|
mpbird |
|- ( ph -> F ~~>* A ) |