| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimconst2.p |  |-  F/ k ph | 
						
							| 2 |  | xlimconst2.k |  |-  F/_ k F | 
						
							| 3 |  | xlimconst2.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | xlimconst2.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 5 |  | xlimconst2.n |  |-  ( ph -> N e. Z ) | 
						
							| 6 |  | xlimconst2.a |  |-  ( ph -> A e. RR* ) | 
						
							| 7 |  | xlimconst2.e |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = A ) | 
						
							| 8 |  | nfcv |  |-  F/_ k ( ZZ>= ` N ) | 
						
							| 9 | 2 8 | nfres |  |-  F/_ k ( F |` ( ZZ>= ` N ) ) | 
						
							| 10 | 3 5 | eluzelz2d |  |-  ( ph -> N e. ZZ ) | 
						
							| 11 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 12 | 4 | ffnd |  |-  ( ph -> F Fn Z ) | 
						
							| 13 | 3 5 | uzssd2 |  |-  ( ph -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 14 | 12 13 | fnssresd |  |-  ( ph -> ( F |` ( ZZ>= ` N ) ) Fn ( ZZ>= ` N ) ) | 
						
							| 15 |  | fvres |  |-  ( k e. ( ZZ>= ` N ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) ) | 
						
							| 17 | 16 7 | eqtrd |  |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = A ) | 
						
							| 18 | 1 9 10 11 14 6 17 | xlimconst |  |-  ( ph -> ( F |` ( ZZ>= ` N ) ) ~~>* A ) | 
						
							| 19 | 3 4 | fuzxrpmcn |  |-  ( ph -> F e. ( RR* ^pm CC ) ) | 
						
							| 20 | 19 10 | xlimres |  |-  ( ph -> ( F ~~>* A <-> ( F |` ( ZZ>= ` N ) ) ~~>* A ) ) | 
						
							| 21 | 18 20 | mpbird |  |-  ( ph -> F ~~>* A ) |