Metamath Proof Explorer


Theorem xlimconst2

Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst2.p
|- F/ k ph
xlimconst2.k
|- F/_ k F
xlimconst2.z
|- Z = ( ZZ>= ` M )
xlimconst2.f
|- ( ph -> F : Z --> RR* )
xlimconst2.n
|- ( ph -> N e. Z )
xlimconst2.a
|- ( ph -> A e. RR* )
xlimconst2.e
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = A )
Assertion xlimconst2
|- ( ph -> F ~~>* A )

Proof

Step Hyp Ref Expression
1 xlimconst2.p
 |-  F/ k ph
2 xlimconst2.k
 |-  F/_ k F
3 xlimconst2.z
 |-  Z = ( ZZ>= ` M )
4 xlimconst2.f
 |-  ( ph -> F : Z --> RR* )
5 xlimconst2.n
 |-  ( ph -> N e. Z )
6 xlimconst2.a
 |-  ( ph -> A e. RR* )
7 xlimconst2.e
 |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = A )
8 nfcv
 |-  F/_ k ( ZZ>= ` N )
9 2 8 nfres
 |-  F/_ k ( F |` ( ZZ>= ` N ) )
10 3 5 eluzelz2d
 |-  ( ph -> N e. ZZ )
11 eqid
 |-  ( ZZ>= ` N ) = ( ZZ>= ` N )
12 4 ffnd
 |-  ( ph -> F Fn Z )
13 3 5 uzssd2
 |-  ( ph -> ( ZZ>= ` N ) C_ Z )
14 12 13 fnssresd
 |-  ( ph -> ( F |` ( ZZ>= ` N ) ) Fn ( ZZ>= ` N ) )
15 fvres
 |-  ( k e. ( ZZ>= ` N ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) )
16 15 adantl
 |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = ( F ` k ) )
17 16 7 eqtrd
 |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( F |` ( ZZ>= ` N ) ) ` k ) = A )
18 1 9 10 11 14 6 17 xlimconst
 |-  ( ph -> ( F |` ( ZZ>= ` N ) ) ~~>* A )
19 3 4 fuzxrpmcn
 |-  ( ph -> F e. ( RR* ^pm CC ) )
20 19 10 xlimres
 |-  ( ph -> ( F ~~>* A <-> ( F |` ( ZZ>= ` N ) ) ~~>* A ) )
21 18 20 mpbird
 |-  ( ph -> F ~~>* A )