Step |
Hyp |
Ref |
Expression |
1 |
|
xlimconst.p |
|- F/ k ph |
2 |
|
xlimconst.k |
|- F/_ k F |
3 |
|
xlimconst.m |
|- ( ph -> M e. ZZ ) |
4 |
|
xlimconst.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
xlimconst.f |
|- ( ph -> F Fn Z ) |
6 |
|
xlimconst.a |
|- ( ph -> A e. RR* ) |
7 |
|
xlimconst.e |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
8 |
1 2 5 6 7
|
fconst7 |
|- ( ph -> F = ( Z X. { A } ) ) |
9 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
10 |
4
|
lmconst |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ A e. RR* /\ M e. ZZ ) -> ( Z X. { A } ) ( ~~>t ` ( ordTop ` <_ ) ) A ) |
11 |
9 6 3 10
|
mp3an2i |
|- ( ph -> ( Z X. { A } ) ( ~~>t ` ( ordTop ` <_ ) ) A ) |
12 |
8 11
|
eqbrtrd |
|- ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) A ) |
13 |
|
df-xlim |
|- ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) |
14 |
13
|
breqi |
|- ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A ) |
15 |
12 14
|
sylibr |
|- ( ph -> F ~~>* A ) |