| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimconst.p |  |-  F/ k ph | 
						
							| 2 |  | xlimconst.k |  |-  F/_ k F | 
						
							| 3 |  | xlimconst.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | xlimconst.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | xlimconst.f |  |-  ( ph -> F Fn Z ) | 
						
							| 6 |  | xlimconst.a |  |-  ( ph -> A e. RR* ) | 
						
							| 7 |  | xlimconst.e |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) | 
						
							| 8 | 1 2 5 6 7 | fconst7 |  |-  ( ph -> F = ( Z X. { A } ) ) | 
						
							| 9 |  | letopon |  |-  ( ordTop ` <_ ) e. ( TopOn ` RR* ) | 
						
							| 10 | 4 | lmconst |  |-  ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ A e. RR* /\ M e. ZZ ) -> ( Z X. { A } ) ( ~~>t ` ( ordTop ` <_ ) ) A ) | 
						
							| 11 | 9 6 3 10 | mp3an2i |  |-  ( ph -> ( Z X. { A } ) ( ~~>t ` ( ordTop ` <_ ) ) A ) | 
						
							| 12 | 8 11 | eqbrtrd |  |-  ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) A ) | 
						
							| 13 |  | df-xlim |  |-  ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) | 
						
							| 14 | 13 | breqi |  |-  ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A ) | 
						
							| 15 | 12 14 | sylibr |  |-  ( ph -> F ~~>* A ) |