| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst7.p |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
fconst7.x |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
fconst7.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 4 |
|
fconst7.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 5 |
|
fconst7.e |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 6 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
| 7 |
5 6
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 8 |
|
snidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ { 𝐵 } ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝐵 } ) |
| 10 |
5 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) |
| 11 |
1 10
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐵 } |
| 14 |
12 13 2
|
ffnfvf |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) ) |
| 15 |
3 11 14
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ { 𝐵 } ) |
| 16 |
|
fconst2g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 18 |
15 17
|
mpbid |
⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 𝐵 } ) ) |