| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmpm1dir.v |
|- V = ( Base ` W ) |
| 2 |
|
clmpm1dir.s |
|- .x. = ( .s ` W ) |
| 3 |
|
clmpm1dir.a |
|- .+ = ( +g ` W ) |
| 4 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 5 |
4
|
oveq1i |
|- ( ( -u 1 x. -u 1 ) .x. A ) = ( 1 .x. A ) |
| 6 |
|
simpl |
|- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
| 7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 8 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 9 |
7 8
|
clmneg1 |
|- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 10 |
9
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 11 |
|
simpr |
|- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
| 12 |
1 7 2 8
|
clmvsass |
|- ( ( W e. CMod /\ ( -u 1 e. ( Base ` ( Scalar ` W ) ) /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) ) -> ( ( -u 1 x. -u 1 ) .x. A ) = ( -u 1 .x. ( -u 1 .x. A ) ) ) |
| 13 |
6 10 10 11 12
|
syl13anc |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 x. -u 1 ) .x. A ) = ( -u 1 .x. ( -u 1 .x. A ) ) ) |
| 14 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ A e. V ) -> ( 1 .x. A ) = A ) |
| 15 |
5 13 14
|
3eqtr3a |
|- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. ( -u 1 .x. A ) ) = A ) |