Description: Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) | |
| clmsub.k | |- K = ( Base ` F ) | ||
| Assertion | clmneg1 | |- ( W e. CMod -> -u 1 e. K ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) | |
| 2 | clmsub.k | |- K = ( Base ` F ) | |
| 3 | 1 2 | clmzss | |- ( W e. CMod -> ZZ C_ K ) | 
| 4 | neg1z | |- -u 1 e. ZZ | |
| 5 | ssel | |- ( ZZ C_ K -> ( -u 1 e. ZZ -> -u 1 e. K ) ) | |
| 6 | 3 4 5 | mpisyl | |- ( W e. CMod -> -u 1 e. K ) |