| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvsneg.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | clmvsneg.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | clmvsneg.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | clmvsneg.n |  |-  N = ( invg ` W ) | 
						
							| 5 |  | clmvsneg.k |  |-  K = ( Base ` F ) | 
						
							| 6 |  | clmvsneg.w |  |-  ( ph -> W e. CMod ) | 
						
							| 7 |  | clmvsneg.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | clmvsneg.r |  |-  ( ph -> R e. K ) | 
						
							| 9 |  | eqid |  |-  ( invg ` F ) = ( invg ` F ) | 
						
							| 10 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 11 | 6 10 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 12 | 1 2 3 4 5 9 11 7 8 | lmodvsneg |  |-  ( ph -> ( N ` ( R .x. X ) ) = ( ( ( invg ` F ) ` R ) .x. X ) ) | 
						
							| 13 | 2 5 | clmneg |  |-  ( ( W e. CMod /\ R e. K ) -> -u R = ( ( invg ` F ) ` R ) ) | 
						
							| 14 | 6 8 13 | syl2anc |  |-  ( ph -> -u R = ( ( invg ` F ) ` R ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ph -> ( -u R .x. X ) = ( ( ( invg ` F ) ` R ) .x. X ) ) | 
						
							| 16 | 12 15 | eqtr4d |  |-  ( ph -> ( N ` ( R .x. X ) ) = ( -u R .x. X ) ) |