| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsneg.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvsneg.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
clmvsneg.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
clmvsneg.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
| 5 |
|
clmvsneg.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
clmvsneg.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 7 |
|
clmvsneg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
clmvsneg.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) |
| 10 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
1 2 3 4 5 9 11 7 8
|
lmodvsneg |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) · 𝑋 ) ) |
| 13 |
2 5
|
clmneg |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑅 ∈ 𝐾 ) → - 𝑅 = ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) ) |
| 14 |
6 8 13
|
syl2anc |
⊢ ( 𝜑 → - 𝑅 = ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( - 𝑅 · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) · 𝑋 ) ) |
| 16 |
12 15
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( - 𝑅 · 𝑋 ) ) |