Metamath Proof Explorer


Theorem clmzlmvsca

Description: The scalar product of a subcomplex module matches the scalar product of the derived ZZ -module, which implies, together with zlmbas and zlmplusg , that any module over ZZ is structure-equivalent to the canonical ZZ -module ZModG . (Contributed by Mario Carneiro, 30-Oct-2015)

Ref Expression
Hypotheses zlmclm.w
|- W = ( ZMod ` G )
clmzlmvsca.x
|- X = ( Base ` G )
Assertion clmzlmvsca
|- ( ( G e. CMod /\ ( A e. ZZ /\ B e. X ) ) -> ( A ( .s ` G ) B ) = ( A ( .s ` W ) B ) )

Proof

Step Hyp Ref Expression
1 zlmclm.w
 |-  W = ( ZMod ` G )
2 clmzlmvsca.x
 |-  X = ( Base ` G )
3 eqid
 |-  ( .g ` G ) = ( .g ` G )
4 1 3 zlmvsca
 |-  ( .g ` G ) = ( .s ` W )
5 4 eqcomi
 |-  ( .s ` W ) = ( .g ` G )
6 eqid
 |-  ( .s ` G ) = ( .s ` G )
7 2 5 6 clmmulg
 |-  ( ( G e. CMod /\ A e. ZZ /\ B e. X ) -> ( A ( .s ` W ) B ) = ( A ( .s ` G ) B ) )
8 7 eqcomd
 |-  ( ( G e. CMod /\ A e. ZZ /\ B e. X ) -> ( A ( .s ` G ) B ) = ( A ( .s ` W ) B ) )
9 8 3expb
 |-  ( ( G e. CMod /\ ( A e. ZZ /\ B e. X ) ) -> ( A ( .s ` G ) B ) = ( A ( .s ` W ) B ) )