| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmclm.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
| 2 |
|
clmzlmvsca.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 4 |
1 3
|
zlmvsca |
⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
4
|
eqcomi |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( .g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) |
| 7 |
2 5 6
|
clmmulg |
⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) |
| 9 |
8
|
3expb |
⊢ ( ( 𝐺 ∈ ℂMod ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) |