Metamath Proof Explorer


Theorem cnmgpid

Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007) (Revised by AV, 26-Aug-2021)

Ref Expression
Hypothesis cnmgpabl.m
|- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
Assertion cnmgpid
|- ( 0g ` M ) = 1

Proof

Step Hyp Ref Expression
1 cnmgpabl.m
 |-  M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) )
2 cnring
 |-  CCfld e. Ring
3 difss
 |-  ( CC \ { 0 } ) C_ CC
4 ax-1cn
 |-  1 e. CC
5 ax-1ne0
 |-  1 =/= 0
6 eldifsn
 |-  ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) )
7 4 5 6 mpbir2an
 |-  1 e. ( CC \ { 0 } )
8 cnfldbas
 |-  CC = ( Base ` CCfld )
9 cnfld1
 |-  1 = ( 1r ` CCfld )
10 1 8 9 ringidss
 |-  ( ( CCfld e. Ring /\ ( CC \ { 0 } ) C_ CC /\ 1 e. ( CC \ { 0 } ) ) -> 1 = ( 0g ` M ) )
11 10 eqcomd
 |-  ( ( CCfld e. Ring /\ ( CC \ { 0 } ) C_ CC /\ 1 e. ( CC \ { 0 } ) ) -> ( 0g ` M ) = 1 )
12 2 3 7 11 mp3an
 |-  ( 0g ` M ) = 1