Metamath Proof Explorer


Theorem cnmgpid

Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007) (Revised by AV, 26-Aug-2021)

Ref Expression
Hypothesis cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
Assertion cnmgpid ( 0g𝑀 ) = 1

Proof

Step Hyp Ref Expression
1 cnmgpabl.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
2 cnring fld ∈ Ring
3 difss ( ℂ ∖ { 0 } ) ⊆ ℂ
4 ax-1cn 1 ∈ ℂ
5 ax-1ne0 1 ≠ 0
6 eldifsn ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) )
7 4 5 6 mpbir2an 1 ∈ ( ℂ ∖ { 0 } )
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 cnfld1 1 = ( 1r ‘ ℂfld )
10 1 8 9 ringidss ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → 1 = ( 0g𝑀 ) )
11 10 eqcomd ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → ( 0g𝑀 ) = 1 )
12 2 3 7 11 mp3an ( 0g𝑀 ) = 1