| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmgpabl.m |
⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 2 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 3 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 6 |
|
eldifsn |
⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
| 7 |
4 5 6
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 9 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 10 |
1 8 9
|
ringidss |
⊢ ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → 1 = ( 0g ‘ 𝑀 ) ) |
| 11 |
10
|
eqcomd |
⊢ ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → ( 0g ‘ 𝑀 ) = 1 ) |
| 12 |
2 3 7 11
|
mp3an |
⊢ ( 0g ‘ 𝑀 ) = 1 |