| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrnsg.z |  |-  Z = ( Cntr ` M ) | 
						
							| 2 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 3 |  | eqid |  |-  ( Cntz ` M ) = ( Cntz ` M ) | 
						
							| 4 | 2 3 | cntrval |  |-  ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) | 
						
							| 5 | 1 4 | eqtr4i |  |-  Z = ( ( Cntz ` M ) ` ( Base ` M ) ) | 
						
							| 6 |  | ssid |  |-  ( Base ` M ) C_ ( Base ` M ) | 
						
							| 7 | 2 3 | cntzsubg |  |-  ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) | 
						
							| 9 | 5 8 | eqeltrid |  |-  ( M e. Grp -> Z e. ( SubGrp ` M ) ) | 
						
							| 10 |  | ssid |  |-  Z C_ Z | 
						
							| 11 | 1 | cntrsubgnsg |  |-  ( ( Z e. ( SubGrp ` M ) /\ Z C_ Z ) -> Z e. ( NrmSGrp ` M ) ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( M e. Grp -> Z e. ( NrmSGrp ` M ) ) |