| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrnsg.z |  |-  Z = ( Cntr ` M ) | 
						
							| 2 |  | simpl |  |-  ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> X e. ( SubGrp ` M ) ) | 
						
							| 3 |  | simplr |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> X C_ Z ) | 
						
							| 4 |  | simprr |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. X ) | 
						
							| 5 | 3 4 | sseldd |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. Z ) | 
						
							| 6 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 7 |  | eqid |  |-  ( Cntz ` M ) = ( Cntz ` M ) | 
						
							| 8 | 6 7 | cntrval |  |-  ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) | 
						
							| 9 | 8 1 | eqtr4i |  |-  ( ( Cntz ` M ) ` ( Base ` M ) ) = Z | 
						
							| 10 | 5 9 | eleqtrrdi |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. ( ( Cntz ` M ) ` ( Base ` M ) ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> x e. ( Base ` M ) ) | 
						
							| 12 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 13 | 12 7 | cntzi |  |-  ( ( y e. ( ( Cntz ` M ) ` ( Base ` M ) ) /\ x e. ( Base ` M ) ) -> ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) ) | 
						
							| 14 | 10 11 13 | syl2anc |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = ( ( x ( +g ` M ) y ) ( -g ` M ) x ) ) | 
						
							| 16 |  | subgrcl |  |-  ( X e. ( SubGrp ` M ) -> M e. Grp ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> M e. Grp ) | 
						
							| 18 | 6 | subgss |  |-  ( X e. ( SubGrp ` M ) -> X C_ ( Base ` M ) ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> X C_ ( Base ` M ) ) | 
						
							| 20 | 19 4 | sseldd |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. ( Base ` M ) ) | 
						
							| 21 |  | eqid |  |-  ( -g ` M ) = ( -g ` M ) | 
						
							| 22 | 6 12 21 | grppncan |  |-  ( ( M e. Grp /\ y e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = y ) | 
						
							| 23 | 17 20 11 22 | syl3anc |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = y ) | 
						
							| 24 | 15 23 | eqtr3d |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( x ( +g ` M ) y ) ( -g ` M ) x ) = y ) | 
						
							| 25 | 24 4 | eqeltrd |  |-  ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) | 
						
							| 26 | 25 | ralrimivva |  |-  ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> A. x e. ( Base ` M ) A. y e. X ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) | 
						
							| 27 | 6 12 21 | isnsg3 |  |-  ( X e. ( NrmSGrp ` M ) <-> ( X e. ( SubGrp ` M ) /\ A. x e. ( Base ` M ) A. y e. X ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) ) | 
						
							| 28 | 2 26 27 | sylanbrc |  |-  ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> X e. ( NrmSGrp ` M ) ) |