| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrnsg.z | ⊢ 𝑍  =  ( Cntr ‘ 𝑀 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  →  𝑋  ∈  ( SubGrp ‘ 𝑀 ) ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑋  ⊆  𝑍 ) | 
						
							| 4 |  | simprr | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 5 | 3 4 | sseldd | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  𝑍 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 7 |  | eqid | ⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ 𝑀 ) | 
						
							| 8 | 6 7 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  =  ( Cntr ‘ 𝑀 ) | 
						
							| 9 | 8 1 | eqtr4i | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  =  𝑍 | 
						
							| 10 | 5 9 | eleqtrrdi | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 13 | 12 7 | cntzi | ⊢ ( ( 𝑦  ∈  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 14 | 10 11 13 | syl2anc | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 )  =  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) ) | 
						
							| 16 |  | subgrcl | ⊢ ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  →  𝑀  ∈  Grp ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑀  ∈  Grp ) | 
						
							| 18 | 6 | subgss | ⊢ ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑋  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 20 | 19 4 | sseldd | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  𝑦  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 21 |  | eqid | ⊢ ( -g ‘ 𝑀 )  =  ( -g ‘ 𝑀 ) | 
						
							| 22 | 6 12 21 | grppncan | ⊢ ( ( 𝑀  ∈  Grp  ∧  𝑦  ∈  ( Base ‘ 𝑀 )  ∧  𝑥  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 )  =  𝑦 ) | 
						
							| 23 | 17 20 11 22 | syl3anc | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 )  =  𝑦 ) | 
						
							| 24 | 15 23 | eqtr3d | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 )  =  𝑦 ) | 
						
							| 25 | 24 4 | eqeltrd | ⊢ ( ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 ) | 
						
							| 26 | 25 | ralrimivva | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 ) | 
						
							| 27 | 6 12 21 | isnsg3 | ⊢ ( 𝑋  ∈  ( NrmSGrp ‘ 𝑀 )  ↔  ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑀 ) ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 )  ∈  𝑋 ) ) | 
						
							| 28 | 2 26 27 | sylanbrc | ⊢ ( ( 𝑋  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑋  ⊆  𝑍 )  →  𝑋  ∈  ( NrmSGrp ‘ 𝑀 ) ) |