| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrnsg.z | ⊢ 𝑍  =  ( Cntr ‘ 𝑀 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | eqid | ⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ 𝑀 ) | 
						
							| 4 | 2 3 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  =  ( Cntr ‘ 𝑀 ) | 
						
							| 5 | 1 4 | eqtr4i | ⊢ 𝑍  =  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) | 
						
							| 6 |  | ssid | ⊢ ( Base ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 7 | 2 3 | cntzsubg | ⊢ ( ( 𝑀  ∈  Grp  ∧  ( Base ‘ 𝑀 )  ⊆  ( Base ‘ 𝑀 ) )  →  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  ∈  ( SubGrp ‘ 𝑀 ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑀  ∈  Grp  →  ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) )  ∈  ( SubGrp ‘ 𝑀 ) ) | 
						
							| 9 | 5 8 | eqeltrid | ⊢ ( 𝑀  ∈  Grp  →  𝑍  ∈  ( SubGrp ‘ 𝑀 ) ) | 
						
							| 10 |  | ssid | ⊢ 𝑍  ⊆  𝑍 | 
						
							| 11 | 1 | cntrsubgnsg | ⊢ ( ( 𝑍  ∈  ( SubGrp ‘ 𝑀 )  ∧  𝑍  ⊆  𝑍 )  →  𝑍  ∈  ( NrmSGrp ‘ 𝑀 ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( 𝑀  ∈  Grp  →  𝑍  ∈  ( NrmSGrp ‘ 𝑀 ) ) |