Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi , the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnvimamptfin.n | |- ( ph -> N e. Fin ) |
|
| Assertion | cnvimamptfin | |- ( ph -> ( `' ( p e. N |-> X ) " Y ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimamptfin.n | |- ( ph -> N e. Fin ) |
|
| 2 | cnvimass | |- ( `' ( p e. N |-> X ) " Y ) C_ dom ( p e. N |-> X ) |
|
| 3 | eqid | |- ( p e. N |-> X ) = ( p e. N |-> X ) |
|
| 4 | 3 | dmmptss | |- dom ( p e. N |-> X ) C_ N |
| 5 | 2 4 | sstri | |- ( `' ( p e. N |-> X ) " Y ) C_ N |
| 6 | ssfi | |- ( ( N e. Fin /\ ( `' ( p e. N |-> X ) " Y ) C_ N ) -> ( `' ( p e. N |-> X ) " Y ) e. Fin ) |
|
| 7 | 1 5 6 | sylancl | |- ( ph -> ( `' ( p e. N |-> X ) " Y ) e. Fin ) |