Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi , the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnvimamptfin.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| Assertion | cnvimamptfin | ⊢ ( 𝜑 → ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimamptfin.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 2 | cnvimass | ⊢ ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ⊆ dom ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) | |
| 3 | eqid | ⊢ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) | |
| 4 | 3 | dmmptss | ⊢ dom ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) ⊆ 𝑁 |
| 5 | 2 4 | sstri | ⊢ ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ⊆ 𝑁 |
| 6 | ssfi | ⊢ ( ( 𝑁 ∈ Fin ∧ ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ⊆ 𝑁 ) → ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ∈ Fin ) | |
| 7 | 1 5 6 | sylancl | ⊢ ( 𝜑 → ( ◡ ( 𝑝 ∈ 𝑁 ↦ 𝑋 ) “ 𝑌 ) ∈ Fin ) |