| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coffth.f |
|- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
| 2 |
|
coffth.g |
|- ( ph -> G e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 3 |
1
|
elin1d |
|- ( ph -> F e. ( C Full D ) ) |
| 4 |
2
|
elin1d |
|- ( ph -> G e. ( D Full E ) ) |
| 5 |
3 4
|
cofull |
|- ( ph -> ( G o.func F ) e. ( C Full E ) ) |
| 6 |
1
|
elin2d |
|- ( ph -> F e. ( C Faith D ) ) |
| 7 |
2
|
elin2d |
|- ( ph -> G e. ( D Faith E ) ) |
| 8 |
6 7
|
cofth |
|- ( ph -> ( G o.func F ) e. ( C Faith E ) ) |
| 9 |
5 8
|
elind |
|- ( ph -> ( G o.func F ) e. ( ( C Full E ) i^i ( C Faith E ) ) ) |