| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescfth.d |
|- D = ( C |`cat J ) |
| 2 |
|
rescfth.i |
|- I = ( idFunc ` D ) |
| 3 |
1
|
oveq2i |
|- ( D Faith D ) = ( D Faith ( C |`cat J ) ) |
| 4 |
|
fthres2 |
|- ( J e. ( Subcat ` C ) -> ( D Faith ( C |`cat J ) ) C_ ( D Faith C ) ) |
| 5 |
3 4
|
eqsstrid |
|- ( J e. ( Subcat ` C ) -> ( D Faith D ) C_ ( D Faith C ) ) |
| 6 |
|
id |
|- ( J e. ( Subcat ` C ) -> J e. ( Subcat ` C ) ) |
| 7 |
1 6
|
subccat |
|- ( J e. ( Subcat ` C ) -> D e. Cat ) |
| 8 |
2
|
idffth |
|- ( D e. Cat -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
| 9 |
7 8
|
syl |
|- ( J e. ( Subcat ` C ) -> I e. ( ( D Full D ) i^i ( D Faith D ) ) ) |
| 10 |
9
|
elin2d |
|- ( J e. ( Subcat ` C ) -> I e. ( D Faith D ) ) |
| 11 |
5 10
|
sseldd |
|- ( J e. ( Subcat ` C ) -> I e. ( D Faith C ) ) |