| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofid1a.i |
|- I = ( idFunc ` D ) |
| 2 |
|
cofid1a.b |
|- B = ( Base ` D ) |
| 3 |
|
cofid1a.x |
|- ( ph -> X e. B ) |
| 4 |
|
cofid1.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
cofid1.k |
|- ( ph -> K ( E Func D ) L ) |
| 6 |
|
cofid1.o |
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
| 7 |
5
|
func1st |
|- ( ph -> ( 1st ` <. K , L >. ) = K ) |
| 8 |
4
|
func1st |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 9 |
8
|
fveq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 10 |
7 9
|
fveq12d |
|- ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = ( K ` ( F ` X ) ) ) |
| 11 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
| 12 |
4 11
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 13 |
|
df-br |
|- ( K ( E Func D ) L <-> <. K , L >. e. ( E Func D ) ) |
| 14 |
5 13
|
sylib |
|- ( ph -> <. K , L >. e. ( E Func D ) ) |
| 15 |
1 2 3 12 14 6
|
cofid1a |
|- ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = X ) |
| 16 |
10 15
|
eqtr3d |
|- ( ph -> ( K ` ( F ` X ) ) = X ) |