Metamath Proof Explorer


Theorem cofid1

Description: Express the object part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofid1a.i I = id func D
cofid1a.b B = Base D
cofid1a.x φ X B
cofid1.f φ F D Func E G
cofid1.k φ K E Func D L
cofid1.o φ K L func F G = I
Assertion cofid1 φ K F X = X

Proof

Step Hyp Ref Expression
1 cofid1a.i I = id func D
2 cofid1a.b B = Base D
3 cofid1a.x φ X B
4 cofid1.f φ F D Func E G
5 cofid1.k φ K E Func D L
6 cofid1.o φ K L func F G = I
7 5 func1st φ 1 st K L = K
8 4 func1st φ 1 st F G = F
9 8 fveq1d φ 1 st F G X = F X
10 7 9 fveq12d φ 1 st K L 1 st F G X = K F X
11 df-br F D Func E G F G D Func E
12 4 11 sylib φ F G D Func E
13 df-br K E Func D L K L E Func D
14 5 13 sylib φ K L E Func D
15 1 2 3 12 14 6 cofid1a φ 1 st K L 1 st F G X = X
16 10 15 eqtr3d φ K F X = X