Metamath Proof Explorer


Theorem cofid2

Description: Express the morphism part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofid1a.i I = id func D
cofid1a.b B = Base D
cofid1a.x φ X B
cofid1.f φ F D Func E G
cofid1.k φ K E Func D L
cofid1.o φ K L func F G = I
cofid2.y φ Y B
cofid2.h H = Hom D
cofid2.r φ R X H Y
Assertion cofid2 φ F X L F Y X G Y R = R

Proof

Step Hyp Ref Expression
1 cofid1a.i I = id func D
2 cofid1a.b B = Base D
3 cofid1a.x φ X B
4 cofid1.f φ F D Func E G
5 cofid1.k φ K E Func D L
6 cofid1.o φ K L func F G = I
7 cofid2.y φ Y B
8 cofid2.h H = Hom D
9 cofid2.r φ R X H Y
10 5 func2nd φ 2 nd K L = L
11 4 func1st φ 1 st F G = F
12 11 fveq1d φ 1 st F G X = F X
13 11 fveq1d φ 1 st F G Y = F Y
14 10 12 13 oveq123d φ 1 st F G X 2 nd K L 1 st F G Y = F X L F Y
15 4 func2nd φ 2 nd F G = G
16 15 oveqd φ X 2 nd F G Y = X G Y
17 16 fveq1d φ X 2 nd F G Y R = X G Y R
18 14 17 fveq12d φ 1 st F G X 2 nd K L 1 st F G Y X 2 nd F G Y R = F X L F Y X G Y R
19 df-br F D Func E G F G D Func E
20 4 19 sylib φ F G D Func E
21 df-br K E Func D L K L E Func D
22 5 21 sylib φ K L E Func D
23 1 2 3 20 22 6 7 8 9 cofid2a φ 1 st F G X 2 nd K L 1 st F G Y X 2 nd F G Y R = R
24 18 23 eqtr3d φ F X L F Y X G Y R = R