Metamath Proof Explorer


Theorem cofid2

Description: Express the morphism part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofid1a.i 𝐼 = ( idfunc𝐷 )
cofid1a.b 𝐵 = ( Base ‘ 𝐷 )
cofid1a.x ( 𝜑𝑋𝐵 )
cofid1.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
cofid1.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
cofid1.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
cofid2.y ( 𝜑𝑌𝐵 )
cofid2.h 𝐻 = ( Hom ‘ 𝐷 )
cofid2.r ( 𝜑𝑅 ∈ ( 𝑋 𝐻 𝑌 ) )
Assertion cofid2 ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 cofid1a.i 𝐼 = ( idfunc𝐷 )
2 cofid1a.b 𝐵 = ( Base ‘ 𝐷 )
3 cofid1a.x ( 𝜑𝑋𝐵 )
4 cofid1.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
5 cofid1.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
6 cofid1.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
7 cofid2.y ( 𝜑𝑌𝐵 )
8 cofid2.h 𝐻 = ( Hom ‘ 𝐷 )
9 cofid2.r ( 𝜑𝑅 ∈ ( 𝑋 𝐻 𝑌 ) )
10 5 func2nd ( 𝜑 → ( 2nd ‘ ⟨ 𝐾 , 𝐿 ⟩ ) = 𝐿 )
11 4 func1st ( 𝜑 → ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐹 )
12 11 fveq1d ( 𝜑 → ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑋 ) = ( 𝐹𝑋 ) )
13 11 fveq1d ( 𝜑 → ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑌 ) = ( 𝐹𝑌 ) )
14 10 12 13 oveq123d ( 𝜑 → ( ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑋 ) ( 2nd ‘ ⟨ 𝐾 , 𝐿 ⟩ ) ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑌 ) ) = ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) )
15 4 func2nd ( 𝜑 → ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐺 )
16 15 oveqd ( 𝜑 → ( 𝑋 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) )
17 16 fveq1d ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )
18 14 17 fveq12d ( 𝜑 → ( ( ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑋 ) ( 2nd ‘ ⟨ 𝐾 , 𝐿 ⟩ ) ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) )
19 df-br ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
20 4 19 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
21 df-br ( 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ↔ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐸 Func 𝐷 ) )
22 5 21 sylib ( 𝜑 → ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐸 Func 𝐷 ) )
23 1 2 3 20 22 6 7 8 9 cofid2a ( 𝜑 → ( ( ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑋 ) ( 2nd ‘ ⟨ 𝐾 , 𝐿 ⟩ ) ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑌 ) ‘ 𝑅 ) ) = 𝑅 )
24 18 23 eqtr3d ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = 𝑅 )