Metamath Proof Explorer


Theorem cofidvala

Description: The property " F is a section of G " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidvala.i 𝐼 = ( idfunc𝐷 )
cofidvala.b 𝐵 = ( Base ‘ 𝐷 )
cofidvala.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
cofidvala.g ( 𝜑𝐺 ∈ ( 𝐸 Func 𝐷 ) )
cofidvala.o ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐼 )
cofidvala.h 𝐻 = ( Hom ‘ 𝐷 )
Assertion cofidvala ( 𝜑 → ( ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ∧ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cofidvala.i 𝐼 = ( idfunc𝐷 )
2 cofidvala.b 𝐵 = ( Base ‘ 𝐷 )
3 cofidvala.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
4 cofidvala.g ( 𝜑𝐺 ∈ ( 𝐸 Func 𝐷 ) )
5 cofidvala.o ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐼 )
6 cofidvala.h 𝐻 = ( Hom ‘ 𝐷 )
7 2 3 4 cofuval ( 𝜑 → ( 𝐺func 𝐹 ) = ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) ⟩ )
8 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
9 8 funcrcl2 ( 𝜑𝐷 ∈ Cat )
10 1 2 9 6 idfuval ( 𝜑𝐼 = ⟨ ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ⟩ )
11 5 7 10 3eqtr3d ( 𝜑 → ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) ⟩ = ⟨ ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ⟩ )
12 2 fvexi 𝐵 ∈ V
13 resiexg ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V )
14 12 13 ax-mp ( I ↾ 𝐵 ) ∈ V
15 12 12 xpex ( 𝐵 × 𝐵 ) ∈ V
16 15 mptex ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ∈ V
17 14 16 opth2 ( ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) , ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) ⟩ = ⟨ ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ⟩ ↔ ( ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ∧ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ) )
18 11 17 sylib ( 𝜑 → ( ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ∧ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻𝑧 ) ) ) ) )