Metamath Proof Explorer


Theorem cofidvala

Description: The property " F is a section of G " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidvala.i I = id func D
cofidvala.b B = Base D
cofidvala.f φ F D Func E
cofidvala.g φ G E Func D
cofidvala.o φ G func F = I
cofidvala.h H = Hom D
Assertion cofidvala φ 1 st G 1 st F = I B x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = z B × B I H z

Proof

Step Hyp Ref Expression
1 cofidvala.i I = id func D
2 cofidvala.b B = Base D
3 cofidvala.f φ F D Func E
4 cofidvala.g φ G E Func D
5 cofidvala.o φ G func F = I
6 cofidvala.h H = Hom D
7 2 3 4 cofuval φ G func F = 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y
8 3 func1st2nd φ 1 st F D Func E 2 nd F
9 8 funcrcl2 φ D Cat
10 1 2 9 6 idfuval φ I = I B z B × B I H z
11 5 7 10 3eqtr3d φ 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = I B z B × B I H z
12 2 fvexi B V
13 resiexg B V I B V
14 12 13 ax-mp I B V
15 12 12 xpex B × B V
16 15 mptex z B × B I H z V
17 14 16 opth2 1 st G 1 st F x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = I B z B × B I H z 1 st G 1 st F = I B x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = z B × B I H z
18 11 17 sylib φ 1 st G 1 st F = I B x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = z B × B I H z