| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidvala.i |
|- I = ( idFunc ` D ) |
| 2 |
|
cofidvala.b |
|- B = ( Base ` D ) |
| 3 |
|
cofidvala.f |
|- ( ph -> F e. ( D Func E ) ) |
| 4 |
|
cofidvala.g |
|- ( ph -> G e. ( E Func D ) ) |
| 5 |
|
cofidvala.o |
|- ( ph -> ( G o.func F ) = I ) |
| 6 |
|
cofidvala.h |
|- H = ( Hom ` D ) |
| 7 |
2 3 4
|
cofuval |
|- ( ph -> ( G o.func F ) = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 8 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 9 |
8
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 10 |
1 2 9 6
|
idfuval |
|- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 11 |
5 7 10
|
3eqtr3d |
|- ( ph -> <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 12 |
2
|
fvexi |
|- B e. _V |
| 13 |
|
resiexg |
|- ( B e. _V -> ( _I |` B ) e. _V ) |
| 14 |
12 13
|
ax-mp |
|- ( _I |` B ) e. _V |
| 15 |
12 12
|
xpex |
|- ( B X. B ) e. _V |
| 16 |
15
|
mptex |
|- ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) e. _V |
| 17 |
14 16
|
opth2 |
|- ( <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. <-> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |
| 18 |
11 17
|
sylib |
|- ( ph -> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |