| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comfffn.o |
|- O = ( comf ` C ) |
| 2 |
|
comfffn.b |
|- B = ( Base ` C ) |
| 3 |
|
comffn.h |
|- H = ( Hom ` C ) |
| 4 |
|
comffn.x |
|- ( ph -> X e. B ) |
| 5 |
|
comffn.y |
|- ( ph -> Y e. B ) |
| 6 |
|
comffn.z |
|- ( ph -> Z e. B ) |
| 7 |
|
eqid |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) |
| 8 |
|
ovex |
|- ( g ( <. X , Y >. ( comp ` C ) Z ) f ) e. _V |
| 9 |
7 8
|
fnmpoi |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) |
| 10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 11 |
1 2 3 10 4 5 6
|
comffval |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) ) |
| 12 |
11
|
fneq1d |
|- ( ph -> ( ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) <-> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) ) |
| 13 |
9 12
|
mpbiri |
|- ( ph -> ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) |