| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comfffval.o |
|- O = ( comf ` C ) |
| 2 |
|
comfffval.b |
|- B = ( Base ` C ) |
| 3 |
|
comfffval.h |
|- H = ( Hom ` C ) |
| 4 |
|
comfffval.x |
|- .x. = ( comp ` C ) |
| 5 |
|
comffval.x |
|- ( ph -> X e. B ) |
| 6 |
|
comffval.y |
|- ( ph -> Y e. B ) |
| 7 |
|
comffval.z |
|- ( ph -> Z e. B ) |
| 8 |
1 2 3 4
|
comfffval |
|- O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) |
| 9 |
8
|
a1i |
|- ( ph -> O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> x = <. X , Y >. ) |
| 11 |
10
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = ( 2nd ` <. X , Y >. ) ) |
| 12 |
|
op2ndg |
|- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 13 |
5 6 12
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 15 |
11 14
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = Y ) |
| 16 |
|
simprr |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
| 17 |
15 16
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` x ) H z ) = ( Y H Z ) ) |
| 18 |
10
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( H ` <. X , Y >. ) ) |
| 19 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
| 20 |
18 19
|
eqtr4di |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( X H Y ) ) |
| 21 |
10 16
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( x .x. z ) = ( <. X , Y >. .x. Z ) ) |
| 22 |
21
|
oveqd |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g ( x .x. z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) ) |
| 23 |
17 20 22
|
mpoeq123dv |
|- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| 24 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 25 |
|
ovex |
|- ( Y H Z ) e. _V |
| 26 |
|
ovex |
|- ( X H Y ) e. _V |
| 27 |
25 26
|
mpoex |
|- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V |
| 28 |
27
|
a1i |
|- ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V ) |
| 29 |
9 23 24 7 28
|
ovmpod |
|- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |