Metamath Proof Explorer


Theorem comfval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval.o
|- O = ( comf ` C )
comfffval.b
|- B = ( Base ` C )
comfffval.h
|- H = ( Hom ` C )
comfffval.x
|- .x. = ( comp ` C )
comffval.x
|- ( ph -> X e. B )
comffval.y
|- ( ph -> Y e. B )
comffval.z
|- ( ph -> Z e. B )
comfval.f
|- ( ph -> F e. ( X H Y ) )
comfval.g
|- ( ph -> G e. ( Y H Z ) )
Assertion comfval
|- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) )

Proof

Step Hyp Ref Expression
1 comfffval.o
 |-  O = ( comf ` C )
2 comfffval.b
 |-  B = ( Base ` C )
3 comfffval.h
 |-  H = ( Hom ` C )
4 comfffval.x
 |-  .x. = ( comp ` C )
5 comffval.x
 |-  ( ph -> X e. B )
6 comffval.y
 |-  ( ph -> Y e. B )
7 comffval.z
 |-  ( ph -> Z e. B )
8 comfval.f
 |-  ( ph -> F e. ( X H Y ) )
9 comfval.g
 |-  ( ph -> G e. ( Y H Z ) )
10 1 2 3 4 5 6 7 comffval
 |-  ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) )
11 oveq12
 |-  ( ( g = G /\ f = F ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) )
12 11 adantl
 |-  ( ( ph /\ ( g = G /\ f = F ) ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) )
13 ovexd
 |-  ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. _V )
14 10 12 9 8 13 ovmpod
 |-  ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) )