| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comfffval2.o |
|- O = ( comf ` C ) |
| 2 |
|
comfffval2.b |
|- B = ( Base ` C ) |
| 3 |
|
comfffval2.h |
|- H = ( Homf ` C ) |
| 4 |
|
comfffval2.x |
|- .x. = ( comp ` C ) |
| 5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 6 |
1 2 5 4
|
comfffval |
|- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 7 |
|
xp2nd |
|- ( x e. ( B X. B ) -> ( 2nd ` x ) e. B ) |
| 8 |
7
|
adantr |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( 2nd ` x ) e. B ) |
| 9 |
|
simpr |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> y e. B ) |
| 10 |
3 2 5 8 9
|
homfval |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( 2nd ` x ) H y ) = ( ( 2nd ` x ) ( Hom ` C ) y ) ) |
| 11 |
|
xp1st |
|- ( x e. ( B X. B ) -> ( 1st ` x ) e. B ) |
| 12 |
11
|
adantr |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( 1st ` x ) e. B ) |
| 13 |
3 2 5 12 8
|
homfval |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( 1st ` x ) H ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 14 |
|
df-ov |
|- ( ( 1st ` x ) H ( 2nd ` x ) ) = ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 15 |
|
df-ov |
|- ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 16 |
13 14 15
|
3eqtr3g |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 17 |
|
1st2nd2 |
|- ( x e. ( B X. B ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 18 |
17
|
adantr |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 19 |
18
|
fveq2d |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` x ) = ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 20 |
18
|
fveq2d |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 21 |
16 19 20
|
3eqtr4d |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` x ) = ( ( Hom ` C ) ` x ) ) |
| 22 |
|
eqidd |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( g ( x .x. y ) f ) = ( g ( x .x. y ) f ) ) |
| 23 |
10 21 22
|
mpoeq123dv |
|- ( ( x e. ( B X. B ) /\ y e. B ) -> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) = ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 24 |
23
|
mpoeq3ia |
|- ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 25 |
6 24
|
eqtr4i |
|- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |