Metamath Proof Explorer


Theorem comfffval2

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval2.o O = comp 𝑓 C
comfffval2.b B = Base C
comfffval2.h H = Hom 𝑓 C
comfffval2.x · ˙ = comp C
Assertion comfffval2 O = x B × B , y B g 2 nd x H y , f H x g x · ˙ y f

Proof

Step Hyp Ref Expression
1 comfffval2.o O = comp 𝑓 C
2 comfffval2.b B = Base C
3 comfffval2.h H = Hom 𝑓 C
4 comfffval2.x · ˙ = comp C
5 eqid Hom C = Hom C
6 1 2 5 4 comfffval O = x B × B , y B g 2 nd x Hom C y , f Hom C x g x · ˙ y f
7 xp2nd x B × B 2 nd x B
8 7 adantr x B × B y B 2 nd x B
9 simpr x B × B y B y B
10 3 2 5 8 9 homfval x B × B y B 2 nd x H y = 2 nd x Hom C y
11 xp1st x B × B 1 st x B
12 11 adantr x B × B y B 1 st x B
13 3 2 5 12 8 homfval x B × B y B 1 st x H 2 nd x = 1 st x Hom C 2 nd x
14 df-ov 1 st x H 2 nd x = H 1 st x 2 nd x
15 df-ov 1 st x Hom C 2 nd x = Hom C 1 st x 2 nd x
16 13 14 15 3eqtr3g x B × B y B H 1 st x 2 nd x = Hom C 1 st x 2 nd x
17 1st2nd2 x B × B x = 1 st x 2 nd x
18 17 adantr x B × B y B x = 1 st x 2 nd x
19 18 fveq2d x B × B y B H x = H 1 st x 2 nd x
20 18 fveq2d x B × B y B Hom C x = Hom C 1 st x 2 nd x
21 16 19 20 3eqtr4d x B × B y B H x = Hom C x
22 eqidd x B × B y B g x · ˙ y f = g x · ˙ y f
23 10 21 22 mpoeq123dv x B × B y B g 2 nd x H y , f H x g x · ˙ y f = g 2 nd x Hom C y , f Hom C x g x · ˙ y f
24 23 mpoeq3ia x B × B , y B g 2 nd x H y , f H x g x · ˙ y f = x B × B , y B g 2 nd x Hom C y , f Hom C x g x · ˙ y f
25 6 24 eqtr4i O = x B × B , y B g 2 nd x H y , f H x g x · ˙ y f