Metamath Proof Explorer


Theorem comffval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval.o O=comp𝑓C
comfffval.b B=BaseC
comfffval.h H=HomC
comfffval.x ·˙=compC
comffval.x φXB
comffval.y φYB
comffval.z φZB
Assertion comffval φXYOZ=gYHZ,fXHYgXY·˙Zf

Proof

Step Hyp Ref Expression
1 comfffval.o O=comp𝑓C
2 comfffval.b B=BaseC
3 comfffval.h H=HomC
4 comfffval.x ·˙=compC
5 comffval.x φXB
6 comffval.y φYB
7 comffval.z φZB
8 1 2 3 4 comfffval O=xB×B,zBg2ndxHz,fHxgx·˙zf
9 8 a1i φO=xB×B,zBg2ndxHz,fHxgx·˙zf
10 simprl φx=XYz=Zx=XY
11 10 fveq2d φx=XYz=Z2ndx=2ndXY
12 op2ndg XBYB2ndXY=Y
13 5 6 12 syl2anc φ2ndXY=Y
14 13 adantr φx=XYz=Z2ndXY=Y
15 11 14 eqtrd φx=XYz=Z2ndx=Y
16 simprr φx=XYz=Zz=Z
17 15 16 oveq12d φx=XYz=Z2ndxHz=YHZ
18 10 fveq2d φx=XYz=ZHx=HXY
19 df-ov XHY=HXY
20 18 19 eqtr4di φx=XYz=ZHx=XHY
21 10 16 oveq12d φx=XYz=Zx·˙z=XY·˙Z
22 21 oveqd φx=XYz=Zgx·˙zf=gXY·˙Zf
23 17 20 22 mpoeq123dv φx=XYz=Zg2ndxHz,fHxgx·˙zf=gYHZ,fXHYgXY·˙Zf
24 5 6 opelxpd φXYB×B
25 ovex YHZV
26 ovex XHYV
27 25 26 mpoex gYHZ,fXHYgXY·˙ZfV
28 27 a1i φgYHZ,fXHYgXY·˙ZfV
29 9 23 24 7 28 ovmpod φXYOZ=gYHZ,fXHYgXY·˙Zf