Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
Assertion | compss | |- ( F " G ) = { y e. ~P A | ( A \ y ) e. G } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
2 | 1 | compsscnv | |- `' F = F |
3 | 2 | imaeq1i | |- ( `' F " G ) = ( F " G ) |
4 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
5 | 4 | cbvmptv | |- ( x e. ~P A |-> ( A \ x ) ) = ( y e. ~P A |-> ( A \ y ) ) |
6 | 1 5 | eqtri | |- F = ( y e. ~P A |-> ( A \ y ) ) |
7 | 6 | mptpreima | |- ( `' F " G ) = { y e. ~P A | ( A \ y ) e. G } |
8 | 3 7 | eqtr3i | |- ( F " G ) = { y e. ~P A | ( A \ y ) e. G } |