Metamath Proof Explorer


Theorem compss

Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a
|- F = ( x e. ~P A |-> ( A \ x ) )
Assertion compss
|- ( F " G ) = { y e. ~P A | ( A \ y ) e. G }

Proof

Step Hyp Ref Expression
1 compss.a
 |-  F = ( x e. ~P A |-> ( A \ x ) )
2 1 compsscnv
 |-  `' F = F
3 2 imaeq1i
 |-  ( `' F " G ) = ( F " G )
4 difeq2
 |-  ( x = y -> ( A \ x ) = ( A \ y ) )
5 4 cbvmptv
 |-  ( x e. ~P A |-> ( A \ x ) ) = ( y e. ~P A |-> ( A \ y ) )
6 1 5 eqtri
 |-  F = ( y e. ~P A |-> ( A \ y ) )
7 6 mptpreima
 |-  ( `' F " G ) = { y e. ~P A | ( A \ y ) e. G }
8 3 7 eqtr3i
 |-  ( F " G ) = { y e. ~P A | ( A \ y ) e. G }