Metamath Proof Explorer


Theorem compss

Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F=x𝒫AAx
Assertion compss FG=y𝒫A|AyG

Proof

Step Hyp Ref Expression
1 compss.a F=x𝒫AAx
2 1 compsscnv F-1=F
3 2 imaeq1i F-1G=FG
4 difeq2 x=yAx=Ay
5 4 cbvmptv x𝒫AAx=y𝒫AAy
6 1 5 eqtri F=y𝒫AAy
7 6 mptpreima F-1G=y𝒫A|AyG
8 3 7 eqtr3i FG=y𝒫A|AyG