Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constcncfg.a | |- ( ph -> A C_ CC ) |
|
| constcncfg.b | |- ( ph -> B e. C ) |
||
| constcncfg.c | |- ( ph -> C C_ CC ) |
||
| Assertion | constcncfg | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constcncfg.a | |- ( ph -> A C_ CC ) |
|
| 2 | constcncfg.b | |- ( ph -> B e. C ) |
|
| 3 | constcncfg.c | |- ( ph -> C C_ CC ) |
|
| 4 | cncfmptc | |- ( ( B e. C /\ A C_ CC /\ C C_ CC ) -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |
|
| 5 | 2 1 3 4 | syl3anc | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |