Metamath Proof Explorer


Theorem constcncfg

Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses constcncfg.a
|- ( ph -> A C_ CC )
constcncfg.b
|- ( ph -> B e. C )
constcncfg.c
|- ( ph -> C C_ CC )
Assertion constcncfg
|- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) )

Proof

Step Hyp Ref Expression
1 constcncfg.a
 |-  ( ph -> A C_ CC )
2 constcncfg.b
 |-  ( ph -> B e. C )
3 constcncfg.c
 |-  ( ph -> C C_ CC )
4 cncfmptc
 |-  ( ( B e. C /\ A C_ CC /\ C C_ CC ) -> ( x e. A |-> B ) e. ( A -cn-> C ) )
5 2 1 3 4 syl3anc
 |-  ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) )