Metamath Proof Explorer
Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
constcncfg.a |
|
|
|
constcncfg.b |
|
|
|
constcncfg.c |
|
|
Assertion |
constcncfg |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constcncfg.a |
|
| 2 |
|
constcncfg.b |
|
| 3 |
|
constcncfg.c |
|
| 4 |
|
cncfmptc |
|
| 5 |
2 1 3 4
|
syl3anc |
|