Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | copsex2dv.a | |- ( ph -> A e. U ) |
|
| copsex2dv.b | |- ( ph -> B e. V ) |
||
| copsex2dv.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
||
| Assertion | copsex2dv | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2dv.a | |- ( ph -> A e. U ) |
|
| 2 | copsex2dv.b | |- ( ph -> B e. V ) |
|
| 3 | copsex2dv.1 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
|
| 4 | 3 | ex | |- ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
| 5 | 4 | alrimivv | |- ( ph -> A. x A. y ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) ) |
| 6 | copsex2t | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) /\ ( A e. U /\ B e. V ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) ) |
|
| 7 | 5 1 2 6 | syl12anc | |- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) ) |